RCL Semiconductors Ltd.

GENERAL DESCRIPTION

The HC165 is fabricated with high speed silicon gate CMOS technology. It has the high noise immunity and low power consumption of standard CMOS integrated circuits. It also offers speeds comparable to low power Schottky devices (LS-TTL).

This 8-bit Shift Register has gated serial inputs and clear. Each register bit is a D-type master/slave flip flop. Inputs A \& B permit complete control over the incoming data. A low at either or both inputs inhibits entry of new data and resets the first flip flop to the low level at the next clock pulse. A high level on one input enables the another input which will then determine the state of the first flip flop. Data at the serial inputs may be changed while the clock is high or low, but only Data meeting the setup and hold time requirements will be entered. Data is serially shifted in and out of the 8-bit Register during the FEATURES

- Typical propagation delay: 13ns
- Wide operating supply voltage range: 2-6V.
- Low input current: $<1 \mu \mathrm{~A}$.
- Low quiescent supply current: $80 \mu \mathrm{~A}$ maximum (74 HC series).
- Outputs Can Drive Up To 10 LSTTL Loads
- ± 4-mA Output Drive at 5 V
- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion

FUNCTIONAL DESCRIPTION

1. Truth Table

Inputs			Function
SH/犃	CK	CK INH	
L	X	X	Parallel load
H	H	X	No change
H	X	H	No change
H	L	\uparrow	Shift
H	\uparrow	L	Shift

$\mathrm{H}=$ High Level (steady state). L= Low Level (steady state)
$\mathrm{X}=$ Irrelevant (any input, including transitions)
$\uparrow=$ Transition from low to high level.
Note: Shift is the content of each internal register shifts toward serial output QH. Data at SER is shifted into the first register.

2. Logic Waveform

ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Unit
DC supply voltage (VDD)	$-0.5 \sim+7.0$	V
DC input or output Voltage (VIN, Vout)	-0.5 to VDD +0.5	V
DC Current Drain per pin, any output (lout)	± 20	mA
DC Current Drain per pin, VDD or VSS (Icc)	± 50	mA
Storage Temperature(TsTG)	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$
Power Dissipation (PD)	500	mW
Lead Temperature(TL) (Soldering, 10seconds)	300	${ }^{\circ} \mathrm{C}$

Note: 1. Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed.

Parameter		Min.	Normal	Max.	Unit
DC Supply Voltage (VDD)		2.0	5.0	6.0	V
VIH High-level Input Voltage	$\begin{gathered} \hline \mathrm{VDD}=2.0 \mathrm{~V} \\ \mathrm{VDD}=4.5 \mathrm{~V} \\ \mathrm{VDD}=6.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$			V
VIL Low-level Input Voltage	$\begin{gathered} \text { VDD }=2.0 \mathrm{~V} \\ \mathrm{VDD}=4.5 \mathrm{~V} \\ \mathrm{VDD}=6.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	V
VI Input Voltage		0		VDD	V
Vo Output Voltage		0		VDD	V
Operating Temperature (TA)	74HC165	-40		+85	${ }^{\circ} \mathrm{C}$
	54HC165	-55		+125	${ }^{\circ} \mathrm{C}$
Input Rise/Fall Times (tr, tf)	$\begin{aligned} & \mathrm{VDD}=2.0 \mathrm{~V} \\ & \mathrm{VDD}=4.5 \mathrm{~V} \\ & \mathrm{VDD}=6.0 \mathrm{~V} \end{aligned}$			$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

Note: 2. All unused inputs of the device must be held at VDD or VSS to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS

(Min./Max. limits apply across temperature unless otherwise specified)

Parameter	Symbol	Typ.	Unit	Guaranteed Limit	VDD	Test Condition	
Minimum High Level Output Voltage	V OH	1.998	V	1.9	2 V	$\mathrm{IOH}=-20 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$
		4.499		4.4	4.5 V		
		5.999		5.9	6 V		
		4.3		3.98	4.5 V	$\mathrm{IOH}=-4 \mathrm{~m} \mathrm{~A}$	
				$3.7(54 \mathrm{HC})$			
				3.84(74HC)			
		5.8		5.48	6 V	$\mathrm{lOH}=-5.2 \mathrm{~m} \mathrm{~A}$	
				5.2(54HC)			
				5.34(74HC)			
Maximum Low Level Output Voltage	VoL	0.002	V	0.1	2 V	IoL=20 $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$
		0.001			4.5 V		
		0.001			6 V		
		0.17		0.26	4.5 V	$\mathrm{loL}=4 \mathrm{~mA}$	
				$0.4(54 \mathrm{HC})$			
				0.33(74HC)			
		0.15		0.26	6 V	$\mathrm{loL}=5.2 \mathrm{~m} \mathrm{~A}$	
				$0.4(54 \mathrm{HC})$			
				0.33(74HC)			
Maximum Input Current	II	± 0.1	nA	± 100	6 V	TA $=25^{\circ} \mathrm{C}$	$\mathrm{VI}=\mathrm{VDD}$ or VSS
				± 1000			
Maximum Supply Current	Icc	-	$\mu \mathrm{A}$	8	6 V	$\mathrm{TA}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{VI}=\mathrm{VDD} \text { or } \mathrm{VSS} \\ \mathrm{I}=0 \end{gathered}$
				160(54HC)			
				80(74HC)			
Input Capacitance	Cln	3	pF	10	2~6V		
Power Dissipation Capacitance	Cpd	75	pF	-		No load	

RCL Semiconductors Ltd.
Timing requirements
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Parameter	Symbol	Unit	Guaranteed Limit	54HC	74HC VDD	Test Condition
Clock (CK) Frequency	fclock	MHz	6	4.2	52 V	
			31	21	294.5 V	
			36	25	156 V	
Pulse duration	tw	ns	80	120	1002 V	SH/LD low
			16	24	204.5 V	OR
			14	14	176 V	CK high or low
Setup time	tsu	ns	80	120	1002 V	SH/LD high before CK \uparrow
			16	24	204.5 V	
			14	14	176 V	
			40	60	502 V	SER before CK \uparrow
			8	12	104.5 V	
			7	10	96 V	CLK INH high before CK \uparrow
			100	150	1252 V	CLK INH low before CK \uparrow
			20	30	254.5 V	OR
			17	26	216 V	Data before SH/LD \downarrow
Hold time	th	ns	5	5	5 2~6V	SER after CK \uparrow PAR data after SH/LD \downarrow

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{tf}_{\mathrm{f}}=6 \mathrm{~ns}, \mathrm{CL}=50 \mathrm{pF}\right.$)

Parameter	Symbol	From (INPUT)		Typ.	Unit	Guaranteed Limit	54HC	74HC	VDD
Maximum Clock (CK) Frequency	fmax			13	MHz	6	4.2	5	2 V
				50		31	21	25	4.5 V
				62		36	25	29	6 V
Time Propagation Delay	tpd	SH/LD	QH or $\overline{\mathrm{QH}}$	80	ns	150	225	190	2 V
				20		30	45	38	4.5 V
				16		26	38	32	6 V
		$\begin{gathered} \hline \mathrm{CK} \\ / \\ \mathrm{H} \\ \hline \end{gathered}$	QH or $\overline{\mathrm{QH}}$	75		150	225	190	2 V
				15		30	45	38	4.5 V
				13		26	38	32	6 V
Transit-time	tt		Any	38	ns	75	110	95	2 V
				8		15	22	19	4.5 V
				6		13	19	16	6 V

Note: 3. C_{PD} determines the no load dynamic power consumption, $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} V_{V D D}{ }^{2} \mathrm{f}+\mathrm{Icc} \operatorname{VDD}$, and the no load dynamic current consumption, $\mathrm{Is}=\mathrm{CpD}_{\mathrm{VDD}}{ }^{\mathrm{f}}+$ Icc.

AC SWITCHING WAVEFORM AND AC TEST CIRCUIT

VOLTAGE
WAVEFORMS PULSE DURATIONS

VOLTAGE
WAVEFORMS
SETUP AND HOLD Input AND INPUT RISE AND FALL TIMES

VOLTAGE
WAVEFORMS PROPAGATION
DELAY AND OUTPUT TRANSITION TIMES

PIN NO.	SYMBOL	DESCRIPTION
$11,12,13,14,3,4,5,6$	A, B, C, D, E, F, G, H	Data Inputs
7,9	QH, QH	Outputs
8	VSS	Ground (0V)
2	CK	Clock input (active at rising edge)
1	SH/LD	Shift load
16	VDD	Positive power supply
15	CK INH	Clock inhibit
10	SER	Serial input

Pin Configuration

PAD DIAGRAM

The Coordinate of Each Pad
$\overline{\mathrm{QH}}(-361.4,-645.3) \quad \mathrm{CK} \operatorname{INH}(322.1,539.0)$
$\operatorname{VSS}(-45.4,-645.3) \quad \operatorname{VDD}(65.3,539.0)$
QH (271.3, -645.3) SH/LD(-271.8, 553.5)
SER (342.6, -343.3) CK (-432.7, 555.3)
A (342.6, - 200.7)
E (-432.7,
92.9)
B $(342.6,13.3)$
F (-432.7, -121.1)
C $(342.6,156.1)$
G (-432.7, -270.5)
D $(342.6,370.1) \quad H(-432.7,-484.5)$

Note: Substrate should be connected to VDD or left it open.

