RCL Semiconductors Ltd.

32 KHz Standard Watch CMOS IC

C1933 / C1933B

GENERAL DESCRIPTION

The C1933/C1933B is an integrated circuit fabricated in Polysilicon-Gate CMOS technology for application in bipolar stepping motor driven analog timepieces. It consists of a 32 KHz oscillator, frequency divider, voltage regulator and push-pull motor driver. A programmable oscillator output integrated capacitor is built-in so that only an external trimming capacitor and crystal are required by the oscillator. Low current consumption and high oscillator stability are achieved by an on-chip voltage regulator.

FUNCTIONAL DESCRIPTION

Oscillator

An integrated oscillator with mask selectable capacitor in OSCOUT are provided so that only a 32768 Hz quartz crystal and a trimming capacitor is required to complete the oscillator circuit. If a trimmer capacitor is not used, another built-in capacitor at OSCIN can be mask programmed as an oscillator input capacitor. The capacitance of both built-in capacitors can be programmed in 2 pF step size with maximum total capacitance of 24 pF.

Voltage regulator

A well controlled reduced negative supply voltage is provided by a built-in integrated voltage regulator. It helps in improving the oscillator stability as well as reducing the power consumption.

Push-pull motor drivers

The C1933/C1933B has two push-pull output drivers. During a motor pulse the n-channel transistor of one driver and the p-channel transistor of the other driver are on. Between two consecutive motor pulses the n-channel transistors of both drivers are on (Figure 2). Cycle time and pulse width can be chosen from various options by the metal mask.

FEATURES

- Built-in 32768 Hz oscillator.
- Mask selectable integrated oscillator capacitors.
- 1.3 ~ 1.8V operating voltage range.
- Single battery operation and low current consumption achieved by built-in voltage regulator.
- Low resistance push-pull motor output drivers.
- Motor fast test function.
- Mask programmable motor cycle time, motor pulse width, motor test cycle time and pad designation.
- · Low operating current.

Reset

A debounced circuit with debounced time of 23.4 ms is provided for the RESET input. Connecting the RESET pad to VDD longer than the debounced time would disable further motor pulses. Motor pulse in progress when RESET is applied will be completed. Disconnecting the RESET pad from VDD, the next motor pulses would be output after half motor cycle time with polarity opposite to the previous one (Figure 3).

Test

The test pad can be used to monitor the oscillating frequency which is divided down to 512 Hz and can be measured with a high resistance probe. To enter the test mode, this pad should be pull to VDD longer than the debounced time (3ms) and the motor cycle time would change from the selected value to the test cycle time (mask options), while the motor pulse width remains unchanged.

TABLE 1: OPTION LIST FOR C1933/C1933B MOTOR OUTPUTS

Cycle time TM

= 2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 s

Motor pulse width t_m
Motor test cycle time TMT

0.98ms X N (N= 1 to 15)

= 250, 125, 62.5 ms

PAD CONFIGURATION

VSS	NC RESET							
<u>C193</u>	3							
TEST <u>Die Size = 50 mil</u>	x 40 mil MOTI							
Pad Size = $86 \text{ um } \times 86 \text{ um}$								
OSCIN	MOT2							

Note: Substrate should be either left open or connected to VDD.

Signal Description Pads' Co-ordinates VŠS Negative supply voltage (-529.0, -198.5) **TEST** Test input / output

(-528.9, -368.6) (-529.0, -666.2) / (-529.0, -872.7) Oscillator input / output
For test internal VGG , cannot be OSCIN / OSCOUT

(272.8, -187.5)used for bonding

RESET Reset input (444.4, -198.5)

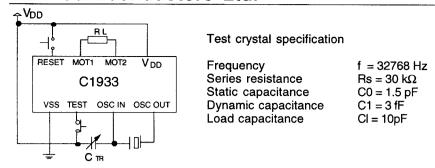
(442.9, -364.5) / (442.9, -729.0) (442.9, -903.1) MOTI/2 Motor drive outputs

VDD Positive supply voltage

ABSOLUTE MAXIMUM RATINGS

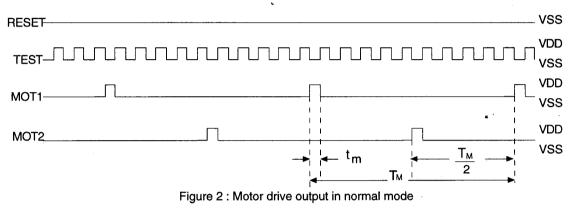
Parameter	Value	Unit
Power supply voltage (VDD - Vss)	- 0.3 ~ + 3.0	V
Input voltage range, all inputs	$(Vss - 0.3) \le V1 \le (VDD + 0.3)$	٧
Operating ambient temperature range	-20 ~ +70	°C
Storage temperature range	-40 ~ +125	တ

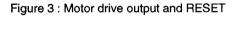
Note: Absolute maximum ratings state parameter limits exceeding which the device may be permanently changed or damaged.


ELECTRICAL CHARACTERISTICS

 $(VDD = 0V; VSS = -1.5V; Ta = +25^{\circ}C; unless otherwise specified)$

All voltage levels are measured with reference to VDD.


Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition				
Operating voltage	Vss	-1.3	1.8		٧	Functional test (Fig.1)				
Operating current	Iss	_	-180	-300	nA	Coscout = 16 pF; RL = ∞				
RESET input current	lR	_	5	RESET = VDD						
Motor Outputs										
Motor output current	lм	±0.7	_	-	mA	RL= $2K\Omega$, Vss = -1.55V				
Cycle time	Τ _M	N	/lask option		s	_				
Motor pulse width	tm	N	/lask option		ms	_				
Motor test cycle time	Тмт	N	/lask option		ms	_				
Oscillator										
start-up voltage	V _{st}	-1.3	_	_	٧	within 2 s				
Integrated input capacitance	Cosc in	N	∕lask option		-	Max. of (Cosc IN +				
Integrated output capacitance	Cosc out	N	/lask option		_	Cosc оит) = 38 PF				


Note 1: Typical parameters represent the statistical mean values.

Note: Substrate should be either left open

or connected to <u>Vdd</u>. Figure 1 : Functional test

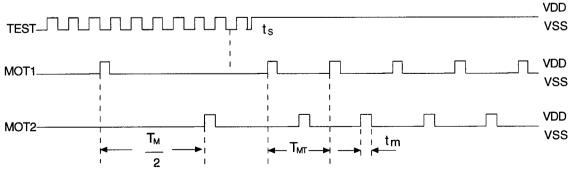


Figure 4: TEST mode: VDD applied to TEST at time t= t_S

OPTION LIST OF C1933/C1933B

	М	otor Out	tput	IC C	ap **									
Option	Cycle time	Pulse width	Test cycle time	OSC IN	OSC OUT	P A D	D	E S	G	N A	A T	10	N	
	s	ms	ms	PF	PE	Pad1	Pad2	Pad3	Pad4	Pad	5 Pad	l6 Pa	d7 Pad	d8 Pad9
C1933	2	5.9	125	2	14	V _{SS}	TEST	OSCIN	OSCOUT	V _{DD}	MOT 2	MOT1	RESET	
C1933	2	4.9	125	20	14	VSS	TEST	OSCIN	OSCOUT	V _{DD}	MOT 2	MOT1	RESET	
C1933	2	5.9	125	20	14	V _{SS}	TEST	OSCIN	OSCOUT	V _{DD}	MOT 2	MOT1	RESET	
C1933	2	3.9	62.5	20	14	V _{SS}	TEST	OSCIN	OSCOUT	V _{DD}	MOT 2	MOT1	RESET	
C1933	2	3.9	62.5	2	14	V _{SS}	TEST	OSCIN	OSCOUT	V _{DD}	MOT 2	MOT1	RESET	
C1933	2	4.9	125	14	14	VSS	TEST	OSCIN	OSCOUT	V _{DD}	MOT2	MOT1	RESET	
C1933	2	3.9	62.5	2	14	V _{SS}	TEST	oscou	T OSCIN	V _{DD}	MOT 2	МОТ	1 RESET	
C1933B	2	5.9	125	20	14	V _{SS}	TEST	OSCIN	OSCOUT	V _{DD}	MOT 2	MOT1	RESET	
C1933B	2	5.9	125	14	14	V _{SS}	TEST	OSCIN	OSCOUT	V _{DD}	MOT 2	MOT1	RESET	

^{**} on-chip stray capacitance included