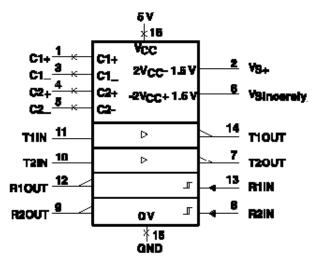
VS232

Dual High-Performance RS232 Line Drivers/Receivers


General Description

The VS232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept \pm 30V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASICTM library. The Operating free-air temperature T_A of VS232 is from 0°C to 70°C.

General Characteristics

- Operates from a Single 5-V Power Supply
- By LinBiCMOSTM technology
- Two Drivers and Two Receivers
- 30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- Compatible with Maxim MAX232
- ESD Protection Exceeds 2000V

Logic diagram

Pin Configuration

VS232 . . . DW or N PACKAGE

(TOP VIEW)

C1+ [V _{S+} [C1- [C2+ [V _{S-} [T20UT [R2IN]	1 2 3 4 5 6 7 8	16 15 14 13 12 11 10 9] V _{CC}] GND] T1OUT] R1IN] R1OUT] T1IN] T2IN] R2OUT
R2IN [8	9] R2OUT

Applications

- Battery-Powered Systems,
- Terminals,
- Modems, and
- Computers

SPECIFICATIONS

Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input supply voltage range, V_{CC}	-0.3 V to 6 V
Positive output supply voltage range, V_{S^+}	V_{CC} – 0.3 V to 15 V
Negative output supply voltage range, $V_{\mbox{\scriptsize S}\mbox{-}}$	-0.3 V to -15 V
Input voltage range, V ₁ : Driver	-0.3 V to VCC + 0.3 V
Receiver	±30 V
Output voltage range, Vo : T1OUT, T2OUT	$V_{\text{S}\text{-}}$ – 0.3 V to $V_{\text{S}\text{+}}$ + 0.3 V
R10UT, R20UT	–0.3 V to V _{CC} + 0.3 V
Short-circuit duration : T1OUT, T2OUT	Unlimited
Operating free-air temperature range, T_A : VS232	0°C to 70°C
Storage temperature range, T _{stg}	−65°C to 150°C
Lead Temperature : 1.6mm from case (1/16 inch), soldering 10sec	260°C

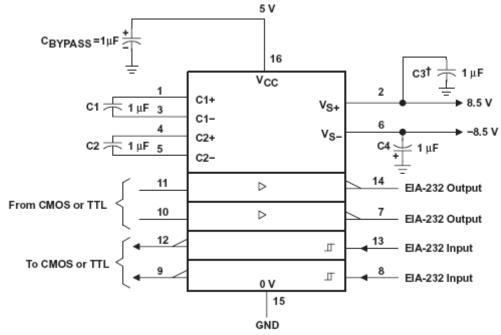
Recommended operating conditions

	MIN	NOM	МАХ	UNIT
V _{cc} Supply voltage	4.5	5	5.5	v
V _{IH} High-level input voltage (T1IN,T2IN)	2			v
V _{IL} Low-level input voltage (T1IN, T2IN)			0.8	v
Receiver input voltage R1IN, R2IN			±30	v
Operating free-air temperature T_A	0		70	°C

Electrical characteristics over recommended ranges of supply voltage and operating free-air emperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP+	мах	UNIT
VOH High-level output voltage	TIOUT, T2OUT	$R_L=3 \ K \Omega \text{ to GND}$	5	7		v
	R1OUT, R2OUT	I _{OH} =-1 mA	3.5			
VOL Low- level output voltage*	TIOUT, T2OUT	$R_L=3 K \Omega$ to GND		-7	-5	v
	RIOUT, R2OUT	Iot=3.2 mA			0.4	
VIT+ receiver positive-going input threshold	R1IN, R2IN	V_{CC} =5v T_A =25°C		1.7	2.4	v
voltage						
VIT- receiver negative-going input threshold	R1IN, R2IN	$v_{cc}{=}5v T_A{=}25^\circ\!\mathbb{C}$	0.8	1.2		v
voltage						
V _{hys} Input hysteresis voltage	R1IN, R2IN	V _{CC} =5v	0.2	0.5	1	v
ri Receive Input resistance	R1IN, R2IN	Vcc=5v T_A=25°C	3	5	7	kΩ
r _o Output resistance	TIOUT, T2OUT	$V_{S+}=V_{S-}=0$ $V_0=\pm 2$ v	300			Ω
IOS++Short-circuit ouput current	TIOUT, T2OUT	V _{cc} =5.5v V ₀ =0		±10		mA
IIS Short-circuit iuput current	T11N, T2IN	V _I =0			200	uA
I _{CC} Supply current		Vcc=5.5v All outputs		8	10	mA
		open, T _A =25 °C				

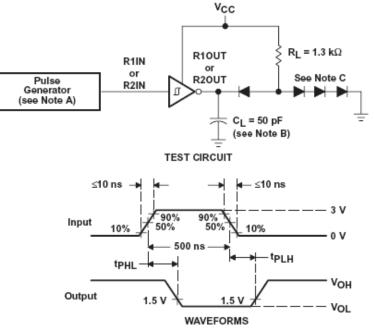
+ All typical values are at V_{CC} = 5 V and T_{A} = 25°C.


* The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

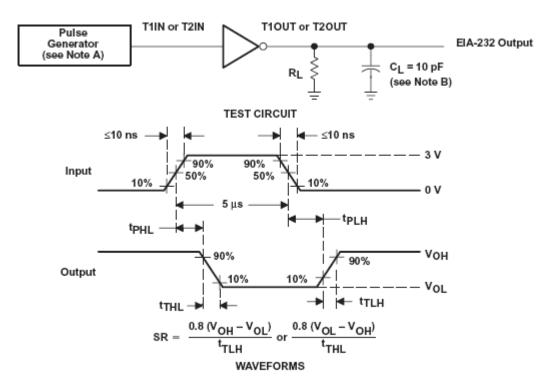
** Not more than one output should be shorted at a time.

Switching characteristics, VCC = 5 V, TA = $25^{\circ}C$

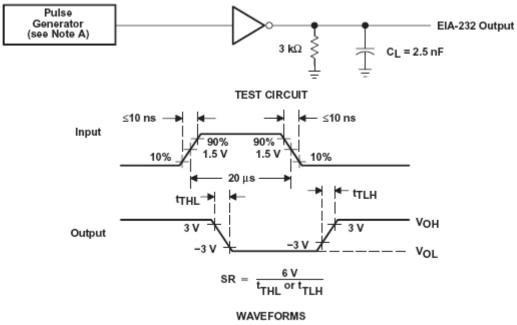
PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
tPLH(R) Receiver propagation delay time, low-to high-level output	See Figure2	500	ns
tPLH(R) Receiver propagation delay time, high-to low-level output	See Figure2	500	ns
SR Driver siew rate	RL=3 k Ω to 7 k Ω	30	V/ µs
	See Figure3		
SR(tr) Driver transition region slew rate	See Figure4	3	V/ µs


Application Information

[†]C3 can be connected to V_{CC} or GND.


Typical Operating Circuit

Parameter Measurement Information


- NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, duty cycle $\leq 50\%$.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, duty cycle $\leq 50\%$. B. C_L includes probe and jig capacitance.

Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-us Input)

NOTE A: The pulse generator has the following characteristics: $Z_O = 50 \Omega$, duty cycle $\leq 50\%$.

Test Circuit and Waveforms for tTHL and tTLH Measurements (20-µs Input)